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Suppression of chaos, quantum resonance, and statistics of a nonintegrable system
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The quantum motion of a periodically two-sided kicked rotator is studied. It is shown that while this
system is classically chaotic, its quantized version is exactly periodic for a suitable choice of the relevant
parameters, and thus not only the chaotic diffusion behavior is suppressed in the course of quantization,
but also the sensitivity to initial conditions. The statistical properties of an ensemble of such systems are
also investigated; the distribution of the probability density is shown to obey the Rayleigh statistics.

PACS number(s): 05.45.+b

Much attention has been paid in recent years to the
study of the effects of chaos in classical Hamiltonian sys-
tems on their quantum counterparts [1,2]. The signs of
the chaotic behavior in these quantum systems may be
used to define the notion of quantum chaos, which is still
unclear. The quantum version of the kicked rotator,
traditionally one of the favorite model systems in the
theory of classical chaos [1], has been extensively studied
in this connection [2,3]. The classical kicked rotator de-
pends on a single parameter K, the dimensionless
strength of the kick. For each value of K the motion is
chaotic or regular depending on the initial conditions.
For small K the chaotic regions are isolated and are
separated by Kolmogorov-Arnold-Moser (KAM) trajec-
tories, and consequently the motion is bounded.
For K=K_,=0.97164. .. the last of these trajectories
disappear, and for K >K_ chaotic diffusion in angular
momentum L takes place, i.e., L 2~ for large t.

It has been found [3] that the quantum-kicked-rotator
model can be mapped into Anderson’s problem of motion
of a quantum particle in a one-dimensional lattice in the
presence of a static diagonal disorder. Since all the eigen-
functions of a one-electron random Hamiltonian are ex-
ponentially localized in space [4] and therefore the elec-
tronic diffusion coefficient and the electron mobility van-
ish at zero temperature, it follows from this mapping that
the quantum dynamical system is localized in angular-
momentum space and hence can reach only a limited
number of angular-momentum states in the course of its
time evolution. This in turn implies quasiperiodicity and
thus boundedness and recurrence of the energy in time
[2], and is in contrast to the chaotic diffusion behavior
obtained for the corresponding classical system for which
the motion is an unrestricted random walk in angular-
momentum space [5].

In this Rapid Communication we consider a slightly
different model, for which the classical behavior is chaot-
ic in an appropriate region of phase space, and show that
quantization of this system leads to an exact periodicity
of the wave function in time for suitable values of the
relevant parameters. This behavior implies the complete
suppression of the chaotic features, where not only the
chaotic diffusion disappears but also the strong (exponen-
tial) dependence on initial conditions, and the time evolu-

1063-651X/94/49(2)/941(4)/$06.00 49

tion of the expectation values is just the same as for inte-
grable systems [9]. For the other region in parameter
space, we use the ladder (diffusion) approximation intro-
duced in the weak localization theory [7], to predict the
statistics of an ensemble of such systems.

The model we discuss is a variation of the traditional-
kicked-rotator model in which the driving term is given
by a sequence of two-sided 8§ impulses, instead of one-
sided kicks, i.e., the interaction term is given by

Perturbations of this kind were discussed in the context
of the dissociation of molecules [6] and it has been shown
that they may be used as an approximation to a
sinusoidal driving term corresponding to an ac elec-
tromagnetic field. In fact, one has

=4 i cos[(2n —1)Qt], (2)

n=1

1
+_
)

i—n
T

t

8 T

Hint=EV(0) § -5

n=-—ow

(1)

1
+_
"y

where Q2=27/T. Thus, where one can neglect the effect
of the larger frequencies, this interaction term is a good
approximation for the ac field.

The Hamiltonian of the system is given by

L 2
int = —-2_1’—
where H;, is given by Eq. (1). Hamilton’s equations as-
sociated with this Hamiltonian are given by

H+Hy+H +H,, , 3)

d6/dt=L /I,
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where V'(6)=03V(60)/06. Introducing dimensionless
variables defined as
LT _kT?
1= YA t/T, k TR (5)

we can write Egs. (4) in the following form:
do/dr=2l,
(6)
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Integrating (6) over one period, one obtains the map
0,,,=06,+1.—kv'(6.+1,),
L =1L —kV'(0,+1)+kV'(0,4) .

This map, as well as the map obtained for the one-sided
kicked rotator, exhibits chaotic features as one can clear-
ly see from Figs. 1 and 2.

We now consider the quantized case, for which the sys-
tem evolves in time as ¥(z +T)=e ~#T/%y(t) where H is
the Hamiltonian given by Eq. (3). Since the Hamiltonian
is periodic in time, the evolution is determined by the
Floquet operator, corresponding to the evolution of the
system in one period. This Floquet operator e ~°F takes,
in this case, the form

—i _ik —iH T/2#% ; —iHyT/2#
e 1F=e lkV(O)e 0 erEV(G)e 0 , (8)

where k =kT /#=2Ik /#T. We then use the identity
e VeWeV=exple Y We') 9
in order to find that

—i —iH,T/2#% —iH,T /2%
1F=e 0 e 0

e , (10)

where Hy=e *VOH ¢*V®)  One sees that the opera-
tors Hy, and H, are related to each other by a unitary

transformation and therefore they have the same spec-
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FIG. 1. Chaotic orbit for the classical map (7), with
V(8)=cos(0) and k =0.9, corresponding to local chaos regime.
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FIG. 2. Chaotic orbit for the classical map (7), with
V(6)=cos(8) and k=1.1, corresponding to global chaos re-
gime.

trum. Let us denote the complete set of eigenfunctions of
the operator H as ¢,(6) and for H, as ¢,,(6), where

¢n=zamn¢m N (11)

For an arbitrary initial condition ¥(6,t)=3 ,8,4,, the
wave function after one period is given by

Wt +T)=e Fy(z)
= Eﬁnamne

—i(E,+E, T/

Y - (12)

The unperturbed Hamiltonian H,, and its unitarily
equivalent H, both have the property that

E,=f(n)E, , (13)

where E, =#%/2I is the energy of the first excited state of
H,, and f(n)=n? takes only integer values. It is there-
fore clear that when

1

(where p is an integer) the wave function turns back to its
initial value for any step, i.e., there is an exact periodicity
of the wave function. Since in this case the Floquet
operator e ~F acts trivially, and (t) is arbitrary, it fol-
lows that the Floquet operator is equal to the identity
operator, and therefore the only eigenvalue of this opera-
tor is 1, and the spectrum is discrete. This result implies
that, if we take two different initial states ¥, and 1,,
the (Hilbert space) distance between - these states
|l1(2)—1,(2)|| is continuous and periodic as a function of
t (with the same frequency as the perturbation), and
therefore, it is bounded by its maximum in the segment
[0,T]. This, in turn, implies that for any observable of
the system, differences in the initial states lead to bound-
ed differences in the expectation values of this observable
during the evolution of the system, in sharp contrast with
the classical chaotic case (exponential sensitivity to initial
conditions).
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The above considerations apply as well to all systems
which satisfy the condition (13), i.e., systems for which all
the energy levels are integer multiples of some fixed ener-
gy, e.g., harmonic oscillator, a particle in a finite box or a
spherical rotator. This phenomenon of quantum reso-
nance is explained in view of the appearance of a new
(one) time scale as a consequence of the quantization.
For the harmonic oscillator, for which the classical sys-
tem also admits one time scale, i.e., 1/w, our results are
valid classically as well, i.e., a two-sided kicked harmonic
oscillator is not chaotic (even classically) under the condi-
tion (14). We therefore see that the suppression of chaos
is strongly related to the existence of one time scale in the
system, which in most cases is introduced due to the
quantization process.

This quantum resonance effect is completely different
from the quantum resonance phenomena introduced in
Refs. [2,3]. In our model the resonance implies periodici-
ty and therefore corresponds to strong localization of the
system (in any representation), while for the mapping of
Ref. [3] the resonance implies the existence of extended
states (in time) and therefore ballistic motion [2].

We now consider the case for which the condition (14)
is not satisfied, i.e., there is no resonance. In this case ex-
act periodicity does not follow immediately from (12);
however, one may analyze this expression using statistical
methods in order to find the behavior of an ensemble of
such systems. For such an ensemble, the wave function
itself may be considered as a random variable, and one
should study the moments of this random variable in or-
der to obtain information on the behavior of the ensem-
ble. We find that the distribution of |1(8)|? is exponen-
tial (Rayleigh statistics) provided that the dimensionless
parameter ¥y =(TE /4mfi)(imod1) is of order one.

We reformulate (12) in order to make contact with the
statistical theory of the diffusion (ladder) approximation
in weakly disordered systems [7]. Using the relation
E,=#*n?/2I, one obtains

Yt +T)=Se irm*+nig o (15)

m,n

where 1, =B,v,. It what follows we consider, for simpli-
city, the time evolution of energy eigenstates of the Ham-
iltonian H,. It then follows that

IO)=|Y(0,t +T)2= V™ ~npx(0)yn (8).  (16)

m,n

We now study the statistical properties of an ensemble
of quantum two-sided kicked rotators, which differ from
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each other by y (e.g., different I or 7). Following Ref.

. -—i'y(m2+n )
[3], we make the assumption that the phases e 2
are sufficiently random, and therefore may be treated as
random numbers. Under this assumption, the only
nonzero contributions for the statistical average of (16)
arise for pairs for which the phase vanishes, e.g., m =*n.
This implies that

(I)=3In,1*. (17

It is easy to see [7] that after averaging over a sufficiently
large set of initial conditions under which one can neglect
the non-positive-definite terms, higher moments of I
satisfy, according to the above argument, the Rayleigh
statistics (exponential distribution)

(I")=n¥1)", (18)
such that
. __I
P(I)= <I)exp |- (19)

It can be shown that these arguments apply as well to the
form of the wave function after n steps and therefore this
statistical property holds generally.

In summary, we have shown that the quantization of
the two-sided kicked rotator problem suppresses all the
features of classical chaos, including the sensitive depen-
dence on initial conditions, due to the existence of a new,
single, time scale. This result indicates that one possible
origin of the phenomenon of the suppression of chaotic
effects in quantum systems is the introduction of new
time scales, which does not exist classically in the prob-
lem. These considerations apply also to systems for
which, although there exist several times scales, one time
scale is the most relevant for the system. For example, in
the Morse oscillator [8] the spectrum consists of two
parts, namely, discrete and continuous spectrum, where
the discrete part obeys the relation (13) [8]. Hence, while
the classical two-sided kicked Morse oscillator is known
[6] to be chaotic, one should expect a significant reduc-
tion of the chaotic effects due to quantization [for suit-
able choice of parameters according to (14)], in the region
for which only the bound states of the oscillator are
relevant.
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FIG. 1. Chaotic orbit for the classical map (7), with
V(6)=cos(0) and k =0.9, corresponding to local chaos regime.
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FIG. 2. Chaotic orbit for the classical map (7), with
V(8)=cos(#) and k=1.1, corresponding to global chaos re-
gime.



